1. 首页 > 12星座查询 > 文章页面

情感计算的“情感计算”的基本内容(什么是情感计算?举例说明情感计算的应用场景?)

情感计算的情感计算的理论框架

这篇文章给大家聊聊关于情感计算的“情感计算”的基本内容,以及情感计算对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

本文目录

什么是情感计算其发展前景如何情感计算的“情感计算”的基本内容什么是情感计算其发展前景如何

如果人类可以赋予AI机器人一定程度甚至人类所有的情感,那么,人类的科技一定将是突飞猛进的发展。

清华权威报告告诉你 人工智能的情感计算是什么

我认为AI有了人的情感,这个世界变化越来精彩。

现在情感计算在未来将改变传统的人机交互模式,实现人与机器的情感交互。从感知智能到认知智能的范式转变,从数据科学到知识科学的范式转变,人工智能也将在未来交出一个更好的回答。

机器是否具有情感是机器人性化程度高低的关键因素之一。让人工智能理解人类情感的研究由此而生。

很长时间以来,是否具备情感,是区分人与机器的重要标准之一。换言之,机器是否具有情感是机器人性化程度高低的关键因素之一。试图让人工智能理解人类情感也并不是新近的研究。

自此,情感计算这一新兴科学领域,开始进入众多信息科学和心理学研究者的视野,从而在世界范围内拉开了人工智能走向人工情感的序幕。

其中,语音是表达情感的主要方式之一。人类总是能够通过他人的语音轻易地判断他人的情感状态。语音的情感主包括语音中所包含的语言内容,声音本身所具有的特征。显然,机器带有情感的语音将使消费者在使用的时候感觉更人性化、更温暖。

从情感计算的决策来看,大量的研究表明,人类在解决某些问题的时候,纯理性的决策过程往往并非最优解。在决策的过程中,情感的加入反而有可能帮助人们找到更优解。因此,在人工智能决策过程中,输入情感变量,或将帮助机器做出更人性化的决策。

此外,情感智能可以让机器更加智能,具有情感的机器不仅更通用、更强大、更有效,而且将更趋近于人类的价值观。在人类科学家长期的努力下,横亘在人脑与电脑之间的“情感”鸿沟正在被跨越。

如今,随着大量统计技术模型的涌现和数据资源的累积,情感计算在应用领域的落地日臻成熟。

情感计算的“情感计算”的基本内容

人们期盼着能拥有并使用更为人性化和智能化的计算机。在人机交互中,从人操作计算机,变为计算机辅助人;从人围着计算机转,变为计算机围着人转;计算机从认知型,变为直觉型。显然,为实现这些转变,人机交互中的计算机应具有情感能力。情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。

情感被用来表示各种不同的内心体验(如情绪、心境和偏好),情绪被用来表示非常短暂但强烈的内心体验,而心境或状态则被用来描述强度低但持久的内心体验。情感是人与环境之间某种关系的维持或改变,当客观事物或情境与人的需要和愿望符合时会引起人积极肯定的情感,而不符合时则会引起人消极否定的情感。

情感具有三种成分:⑴主观体验,即个体对不同情感状态的自我感受;⑵外部表现,即表情,在情感状态发生时身体各部分的动作量化形式。表情包括面部表情(面部肌肉变化所组成的模式)、姿态表情(身体其他部分的表情动作)和语调表情(言语的声调、节奏、速度等方面的变化);⑶生理唤醒,即情感产生的生理反应,是一种生理的激活水平,具有不同的反应模式。

概括而言,情感的重要作用主要表现在四个方面:情感是人适应生存的心理工具,能激发心理活动和行为的动机,是心理活动的组织者,也是人际通信交流的重要手段。从生物进化的角度我们可以把人的情绪分为基本情绪和复杂情绪。基本情绪是先天的,具有独立的神经生理机制、内部体验和外部表现,以及不同的适应功能。人有五种基本情绪,它们分别是当前目标取得进展时的快乐,自我保护的目标受到威胁时的焦虑,当前目标不能实现时的悲伤,当前目标受挫或遭遇阻碍时的愤怒,以及与味觉(味道)目标相违背的厌恶。而复杂情绪则是由基本情绪的不同组合派生出来的。

情感测量包括对情感维度、表情和生理指标三种成分的测量。例如,我们要确定一个人的焦虑水平,可以使用问卷测量其主观感受,通过记录和分析面部肌肉活动测量其面部表情,并用血压计测量血压,对血液样本进行化验,检测血液中肾上腺素水平等。

确定情感维度对情感测量有重要意义,因为只有确定了情感维度,才能对情感体验做出较为准确的评估。情感维度具有两极性,例如,情感的激动性可分为激动和平静两极,激动指的是一种强烈的、外显的情感状态,而平静指的是一种平稳安静的情感状态。心理学的情感维度理论认为,几个维度组成的空间包括了人类所有的情感。但是,情感究竟是二维,三维,还是四维,研究者们并未达成共识。情感的二维理论认为,情感有两个重要维度:⑴愉悦度(也有人提出用趋近-逃避来代替愉悦度);⑵激活度,即与情感状态相联系的机体能量的程度。研究发现,惊反射可用做测量愉悦度的生理指标,而皮肤电反应可用做测量唤醒度的生理指标。

在人机交互研究中已使用过很多种生理指标,例如,皮质醇水平、心率、血压、呼吸、皮肤电活动、掌汗、瞳孔直径、事件相关电位、脑电EEG等。生理指标的记录需要特定的设备和技术,在进行测量时,研究者有时很难分离各种混淆因素对所记录的生理指标的影响。情感计算研究的内容包括三维空间中动态情感信息的实时获取与建模,基于多模态和动态时序特征的情感识别与理解,及其信息融合的理论与方法,情感的自动生成理论及面向多模态的情感表达,以及基于生理和行为特征的大规模动态情感数据资源库的建立等。

欧洲和美国的各大信息技术实验室正加紧进行情感计算系统的研究。剑桥大学、麻省理工学院、飞利浦公司等通过实施“环境智能”、“环境识别”、“智能家庭”等科研项目来开辟这一领域。例如,麻省理工学院媒体实验室的情感计算小组研制的情感计算系统,通过记录人面部表情的摄像机和连接在人身体上的生物传感器来收集数据,然后由一个“情感助理”来调节程序以识别人的情感。如果你对电视讲座的一段内容表现出困惑,情感助理会重放该片段或者给予解释。麻省理工学院“氧工程”的研究人员和比利时IMEC的一个工作小组认为,开发出一种整合各种应用技术的“瑞士军刀”可能是提供移动情感计算服务的关键。而目前国内的情感计算研究重点在于,通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建个人情感计算系统。研究内容主要包括脸部表情处理、情感计算建模方法、情感语音处理、姿态处理、情感分析、自然人机界面、情感机器人等。

情境化是人机交互研究中的新热点。自然和谐的智能化的人机界面的沟通能力特征包括:⑴自然沟通:能看,能听,能说,能触摸;⑵主动沟通:有预期,会提问,并及时调整;⑶有效沟通:对情境的变化敏感,理解用户的情绪和意图,对不同用户、不同环境、不同任务给予不同反馈和支持。而实现这些特征在很大程度上依赖于心理科学和认知科学对人的智能和情感研究所取得的新进展。我们需要知道人是如何感知环境的,人会产生什么样的情感和意图,人如何做出恰当的反应,从而帮助计算机正确感知环境,理解用户的情感和意图,并做出合适反应。因此,人机界面的“智能”不仅应有高的认知智力,也应有高的情绪智力,从而有效地解决人机交互中的情境感知问题、情感与意图的产生与理解问题,以及反应应对问题。

显然,情感交流是一个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。在人机交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,并做出反应。例如,通过对不同类型的用户建模(例如,操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型(例如,根据可能的用户模型主动提供相应有效信息的预期),并以适合当前类型用户的方式呈现信息(例如,呈现方式、操作方式、与知识背景有关的决策支持等);在对当前的操作做出即时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。

情感计算是一个高度综合化的技术领域。通过计算科学与心理科学、认知科学的结合,研究人与人交互、人与计算机交互过程中的情感特点,设计具有情感反馈的人机交互环境,将有可能实现人与计算机的情感交互。迄今为止,有关研究已在人脸表情、姿态分析、语音的情感识别和表达方面取得了一定的进展。

目前情感计算研究面临的挑战仍是多方面的:⑴情感信息的获取与建模,例如,细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型;⑵情感识别与理解,例如,多模态的情感识别和理解;⑶情感表达,例如,多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响;⑷自然和谐的人性化和智能化的人机交互的实现,例如,情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。

情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

展望现代科技的潜力,我们预期在未来的世界中将可能会充满运作良好、操作容易、甚至具有情感特点的计算机。

好了,关于情感计算的“情感计算”的基本内容和情感计算的问题到这里结束啦,希望可以解决您的问题哈!

清华权威报告告诉你 人工智能的情感计算是什么

联系我们

Q Q:

微信号:

工作日:9:30-18:30,节假日休息

微信